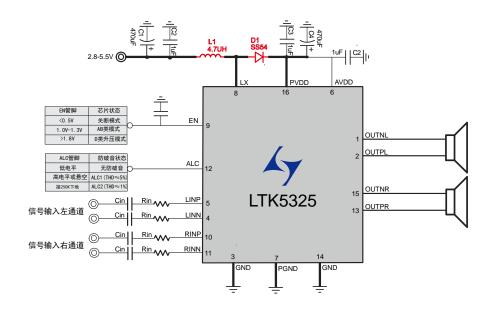
LTK5325 2×5.3W双声道升压G类音频功率放大器

■ 概述

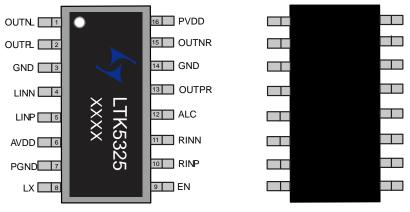
LTK5325 是一款 2×5.3W 内置异步升压音频功率放大器,芯片具有自适应升压、防破音、AB/D类模式切换。自适应同时具备超低底噪、超低EMI,自适应升压在输出幅度较小时升压电路不工作,功放直接由电源供电,当输出幅度较大时内部自动启动升压电路,自适应升压能在提高电池续航时间,延长电池的使用寿命率。LTK5325有2种防破音模式可选择,能满足各种不同的需求,并且保护扬声器避免过载而损坏。芯片具有AB/D类切换功能,AB类时可减少功放对FM干扰。全差分结构有效的提高功放对RF噪声抑制。

■ 应用

- 蓝牙音箱、智能音箱
- 导航仪、便携游戏机
- 拉杆音箱
- 智能家居等各类音频产品


■ 特性

- 输入电压范围 2.8V-5.5V
- 内置异步 B00ST 升压
- 自适应升压
- 两种防破音模式 (ALC)
- 无需滤波器 D 类放大器、低静态电流和低 EMI
- 超低底噪、超低失真
- THD+N=10%, VBAT=4. 2V, 4Ω+33UH 负载下 提供高达 2×5. 3W 的输出功率
- THD+N=1%, VBAT=4. 2V, 4 Ω +33UH 负载下 提 供高达 2×4. 2W 的输出功率
- 短路保护、欠压保护、过温保护


■ 封装

芯片型号	封装类型	封装尺寸
LTK5325	SOP_16	10mm*6mm

■ 典型应用图

■ 管脚说明及定义

Top View

Bottom View

管脚编号	管脚名称	I/O	功能说明
1	OUTNL	0	左声道音频输出负端
2	OUTPL	0	左声道音频输出正端
3	GND	G	电源负端
4	LINN	I	左通道输入负端
5	LINP	I	左通道输入正端
6	AVDD	I	模拟电源输入,接PVDD
7	PGND	G	电源负端
8	LX	Р	B00ST升压开关切换,接外部电感
9	EN	I	芯片使能控制
10	RINP	I	右通道输入正端
11	RINN	I	右通道输入负端
12	ALC	I	防破音控制脚位
13	OUTPR	0	右通道输出正端
14	GND	G	电源负端
15	OUTNR	0	右通道输出负端
16	PVDD	Р	B00ST升压电压输出

■ 最大极限值

参数名称	符号	数值	单位
供电电压	V_{BAT}	5. 5V (MAX)	V
存储温度	$T_{ ext{STG}}$	-65°C-150°C	$^{\circ}$ C
结温度	$T_{\mathtt{J}}$	160℃	$^{\circ}\mathbb{C}$
负载	R_{L}	≥3	Ω

■ 推荐工作范围

参数名称	符号	数值	单位
供电电压	$V_{ extsf{DD}}$	3-4. 2V	V
工作环境温度	$T_{ t STG}$	-40°C to 85°C	$^{\circ}\!\mathbb{C}$
结温度	$T_{ m J}$	_	$^{\circ}\!$

参数名称	符号	数值	单位
人体静电	HBM	± 2000	V
机器模型静电	CDM	±300	V

■ 基本电气特性

A_v=24dB, T_A=25℃, 无特殊说明的项目均是在VBAT=3.7V, 4Ω+33uH条件下测试:

描述	符号	测试	条件	最小值	典型值	最大值	单位
静态电流	$\mathrm{I}_{ ext{DD}}$	VBAT =3.7V,D类		-	8	-	mA
		VBAT = 3.7	7V,AB类		7	-	mA
关断电流	$I_{ ext{SHDN}}$	VBAT=3.7V		ı	1		uA
静态底噪	Vn	VBAT=3.7V , AV	=20DB, Awting		120		uV
D类频率	F_{sw}	VBAT=	3. 7V		510		kHz
升压LX频率	$F_{\scriptscriptstyle LX}$	VBAT=	3. 7V		800		kHz
B00ST升压电压	$V_{ ext{PVDD}}$	VBAT=	3. 7V		\approx 6.5		V
输出失调电压	V_{os}	$V_{IN} =$	OV		10		mV
启动时间	$T_{\rm start}$	Vdd=;	3. 7V		256		ms
增益	Av	D类模式,R _{IN} =27k			≈24		dB
电源关闭电压	Vdd_{EN}	_			<2.0		V
电源开启电压	$Vdd_{\scriptsize{open}}$	_			>2.8		V
过温保护	$O_{ ext{TP}}$	_			180		$^{\circ}$ C
静态导通电阻	D	I _{DS} =0. 5A	P_MOSFET		150		mΩ
即心牙迪电阻	$R_{ exttt{DSON}}$	$V_{GS}=4.2V$	N_MOSFET		120		
内置输入电阻	$R_{\rm s}$	·			6.5K		kΩ
内置反馈电阻	R_{f}				416K		kΩ
效率	η_c	VBAT=4. 2V, P0=4	VBAT=4. 2V, PO=4W		0. 15		%

● Class_D功率

A_v=24dB, T_s=25℃, 无特殊说明均是双通道同时加载下测试:

参数	符号	测试电压	测试条件	典型值	单位
		VBAT=4. 2V	$f=1kHz$, $R_L=4\Omega$, $THD+N=10\%$,	5. 3	
输出功率	Po		$f=1kHz$, $R_L=4\Omega$, THD+N=1%,	4. 2	W
总谐波失真加噪声	THD+N		$V_{DD}=4.2V$, $P_o=4W$, $R_L=4\Omega$	0.15	%

■ 性能特性曲线

● 特性曲线测试条件(T_A=25℃)

描述	测试条件	编号
Input Amplitude VS. Output Amplitude	V_{BAT} =4.2V, R_L =4 Ω +33uH , $Class_D$	图1
Output Power VS. THD+N _Class_D	R _L =4Ω+33uH,A _V =24dB,Class_D	图2
Output Power VS.THD+N_Class_AB	$R_L=4\Omega$, $A_V=24dB$, Class_AB	图3
Frequency VS.THD+N	V_{BAT} =4.2V,R _L =4 Ω ,A _V =24dB,Po=1.5W,Class_D_Awting	图4
Input Voltage VS.Power Crrent	VBAT=3.0V-5V,Class_D	图5
Input Voltage VS. Maximum Output Power	R_L =4 Ω +33uH,THD=10%, Class_D	图6
Frequency Response	V_{BAT} =4.2V, R_L =4 Ω +33uH,Class_D	图7
Output Power VS Efficiency	V_{BAT} =4.2V,R _L =4 Ω +33uH,Class_D	图8

特性曲线图(T_A=25℃)

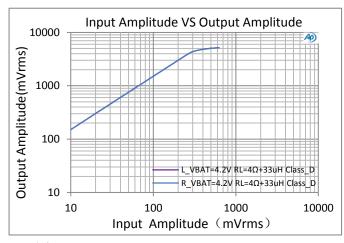


图1: Input Amplitude VS. Output Amplitude

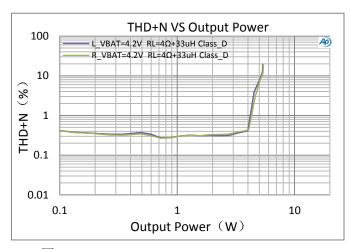


图2: THD+N VS .Output Power Class_D

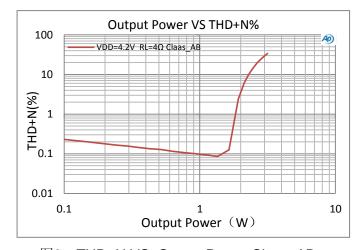


图3: THD+N VS. Output Power Class_AB

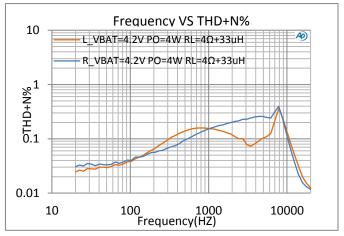


图4: Frequency VS.THD+N

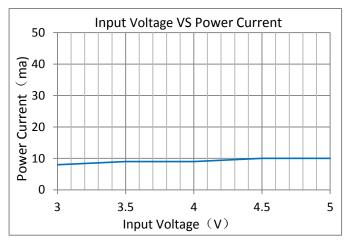


图5: Power Crrent VS. Suppy Voltage

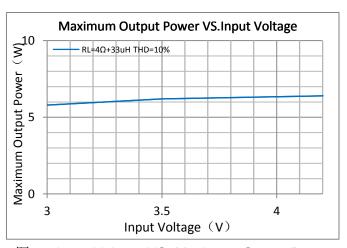


图6: Input Voltage VS. Maximum Output Power

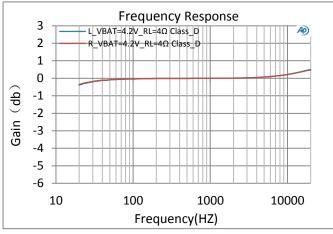


图7: Frequency Response

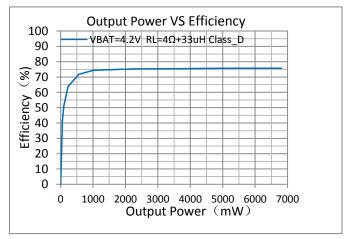


图8: Output Power VS Efficiency

应用说明

EN管脚控制

EN脚是芯片使能端,控制芯片的工作模式,由EN脚 切换D类模式、AB类模式、和关断模式,EN脚需要并 一个电容下地,提供更稳定的电压。

EN管脚	芯片状态
<0.5V	关断
1.0-1.3V	AB类模式
1.8-3.3V	D类模式

ALC管脚控制

ALC控制芯片的防破音开启与关闭,LTK5325内置两 种防破音:

D类防破音1 (AGC1: THD≈5%) D类防破音2 (AGC2: THD≈1%)

ALC管脚	防破音状态
低电平	无防破音
高电平或悬空	防破音1
	(AGC1:THD≈5%)
接250K下地	防破音2
	(AGC2:THD≈1%)

功放增益控制

D类模式时输出为(PWM信号)数字信号,拟信号, 其增益均可通过R™调节。

$$AV = \frac{513K}{5.3K + R_{IM}}$$

Av为增益,通常用dB表示,上述计算结果单位为倍 数、20Log倍数=DB。

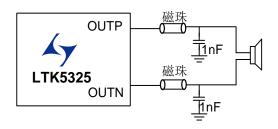
RIN电阻的单位为KΩ、513KΩ为内部反馈电阻 (R_F), 5.3KΩ为内置串联电阻(R_S), RIN由用户 根据实际供电电压、输入幅度、和失真度定义。 如 RIN=27K时, \approx 15.9倍、 $A_v \approx$ 24DB

输入电容(CIN)和输入电阻(RIN)组成高通滤波 器,其截止频率为:

$$f_C = \frac{1}{2\pi \times (R_{IN} + 7.5K) \times C_{IN}}$$

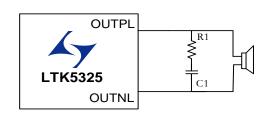
Cin电容选取较小值时,可以滤除从输入端耦合入的 低频噪声,同时有助于减小开启时的POPO

BOOST 电感

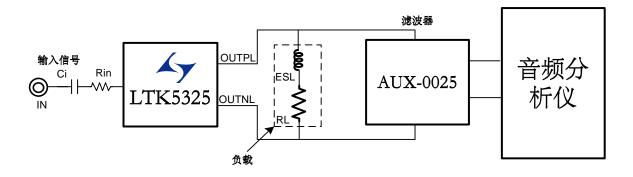

电感是BOOST电路中最重要的元器件, 电感选择不 合适会对B00ST电路的影响非常大。选择的电感一 定要有足够大的额定电流和饱和电流。并且电感的 DRC(直流电阻)越小越好。电感的DRC要小于50m Ω, 饱和电流不小于5A. 对于电感量的选择电感量小 会有较大的电流纹波,但是能提供较好的瞬态响应, 同时会降低BOOST电路的工作效率。而选用电感量 大的是可以降低电流纹波,同时对于工作效率会有 所提高,但瞬态响应会差,所以让功放工作在正常 状态,要选用合适的电感量,推荐使用4.7UH的电 感。

B00ST电容

LTK5325是BOOST升压功放,需要足够的电源电容以 保证输出电压稳定, 纹波小和噪音小。PVDD端的滤 波电容最重要,其次是VBAT电容, PVDD端的电容是 用来稳定升压电压降低输出电压纹波,并且保证PWM 开关控制的工作正常,这个电容对BOOST输出电压的 纹波和稳定性有很大影响,可以选择一个大电容再并 联一小陶瓷电容, 大电容的值在470UF以上耐压不低 于16V, 小的陶瓷电容在0. 1UF-10UF之间, 尽量靠近管 脚放置, VBAT管脚建议放置一个大电容和一个陶瓷 电容来更好的滤波,典型值470\mF并联1UF,放置在 尽可能靠近器件VBAT管脚处,可以得到最好的性能

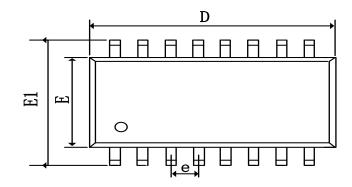

EMI处理

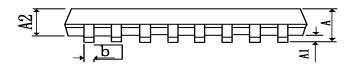
对于输出走线较长或靠近敏感器件时, 建议加上 磁珠和电容,能有效减小EMI。器件靠近芯片放置。


RC缓冲电路

如喇叭负载阻抗值较小时,建议在输出端并一个电 阻和一个电容来吸收电压尖峰,防止芯片工作异常。 电阻推荐使用: 2Ω-5Ω, 电容推荐: 500PF-10NF。

测试方法


在测试D类模式时必须加滤波器测试。AUX-0025为滤波器。为了测试数据精准并符合实际应用,在RL负 载端串联一个电感,模拟喇叭中的寄生电感。


■ PCB设计注意事项

- ▶ PVDD 端选用 470UF/16V 插件电容和 1UF 的陶瓷电容并联,电容尽量靠近 PVDD 管脚。VBAT 端同样选用 470UF/16V 插件电容和 1UF 的陶瓷电容并联, 电容尽量靠近电感放置。
- BOOST 升压电感尽量靠近芯片 LX 管脚放置
- 供电脚(LX、PVDD)走线尽量粗,最好使用敷铜来连接网络,如走线或敷铜中必须打过孔应使用多孔 连接,并加大过孔内径,不可使用单个过孔直接将电源走线连接,因为大电流会引起较大的压降,会 导致压降比较大,对输出功率有较大影响,电源中如存在较大的阻抗甚至影响声音会出现卡顿情况。
- ▶ 输入电容(Cin)、输入电阻(Rin)尽量靠近功放芯片管脚放置,走线最好使用包地方式,可以有效 的抑制其他信号耦合的噪声。
- ▶ LTK5325 的底部带有散热片,建议 PCB 在芯片底部使用大面积开窗敷铜,直接焊接芯片底部,对芯片散 热有很大的帮助, LTK5325 输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度需在 0.4mm 以 上。

■ 芯片封装 (SOP16)

Symbol	Dimensions In Milli meters		Dimensions Ir	n Inches
	Min	Max	Min	Max
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	1.35	1.55	0.053	0.061
b	0.33	0.51	0.013	0.020
С	0.17	0.25	0.007	0.010
D	9.80	10.2	0.386	0.402
D1	3.50	4.50	0.138	0.177
Е	3.80	4.00	0.150	0.157
E1	5.80	6.20	0.228	0.244
E2	2.00	3.00	0.079	0.118
е	1.27(BSC)		0.050	(BSC)
L	0.40	1.27	0.016	0.050
θ	00	8 ⁰	00	8º

ES0P-16